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Structural Preferences of Single-Walled Silica Nanostructures: Nanospheres
and Chemically Stable Nanotubes
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Introduction

Inorganic nanotubes constitute a diverse class of materials;
tubes of various chalcogenides, oxides, nitrides, halides, and
metals have been synthesized previously.[1] Silica, being a
highly abundant and versatile material, is no exception. In
addition to its complex polymorphism it is capable of form-
ing various nanostructures, including silica gel,[2] mesoporous
materials,[3] individual nanotubes,[4] nanowires, and nano-
spheres.[5] Efforts have been made to synthesize silica nano-
tubes with different morphologies,[6] and to study their
growth mechanism.[7] The tubes are multiwalled with diame-
ters of up to hundreds of nanometers, and the use of a tem-
plate is often required to achieve shape control.[8,9] So far,
single-walled silica nanotubes have not been obtained.

Because of the versatility of silica, structure elucidation of
silica nanostructures is a challenge. To take control of its
structural characteristics, it is useful to begin with small clus-
ters. Several theoretical papers on structural preferences of
(SiO2)n clusters have been reported during the last decade.
It is now known that linear D2h- and D2d-symmetric chains,
composed of Si2O2 rings with double oxygen bridges and Si=
O terminal ends, are favored when n<7.[10] This is due to

the large number of coordinatively saturated silicon and
oxygen atoms in short chains among the isomers. Because of
an exponential increase in the number of possible isomers
as a function of n, comprehensive analysis of all of the iso-
mers of larger oligomers is hardly feasible. Nevertheless,
several structural families have been proposed: 1) fully coor-
dinated Si2O2-based rings, which possess greater stability
than the corresponding chains starting from n>11,[11]

2) chains and rings containing Si3O3 rings,[12] 3) oxygen-ter-
minated cages,[13] and 4) coordinatively saturated cages up to
n=24.[14,15] While not always lower in energy, the coordina-
tively saturated structures appear the most reasonable can-
didates, due to the absence of reactive Si=O end groups.

In the theoretical approach described here, our focus is
on the determination of molecular structures of single-
walled coordinatively saturated silica nanostructures. Nano-
spheres were first derived from regular polyhedra, then the
spheres were elongated to nanotubes. The relative stability
of the nanostructures and infinitely long tubes were then es-
timated on the basis of a periodic calculation of crystalline
silica.

Computational Methods

A preliminary optimization of nanospheres was performed by the HF/3-
21G(*) method, followed by verification of the character of stationary
points by frequency calculations. The true minima were reoptimized by
Hartree–Fock (HF) and hybrid density functional B3LYP methods, in
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combination with modified 6-21G* and 6-31G* basis sets for Si and O,
respectively. The basis sets applied have been specifically optimized for
silica by Civalleri et al. ,[16] optimized basis sets being necessary for peri-
odic calculations. All calculations, including the periodic ones, were per-
formed by Gaussian 03 software.[17]

Results and Discussion

Derivation of (SiO2)n nanospheres from regular polyhedra :
Single-walled silica nanospheres were derived from Platonic
solids and Archimedean polyhedra. Platonic solids are usu-
ally denoted by the notation {p,q}, in which p is the number
of sides in each face and q is the number of faces that meet
at each vertex. We have previously demonstrated, by using
Al2O3 nanostructures as an example, that nanospheres with
2:3 stoichiometry can be derived from Platonic solids when
q=3.[18] Without losing the original symmetry of the poly-
hedron, this was done by placing metal atoms into the ver-
texes of the polyhedron, followed by connection of the ver-
texes by means of oxygen bridges. In the case of silica with
a stoichiometry of 1:2, the methodology is only applicable
for Platonic solids when q=4 (for octahedra). As an alterna-
tive building strategy, the required 1:2 stoichiometry can be
produced from Platonic solids when q=3, by introducing
double oxygen bridges between every second pair of Si ver-
texes (Figure 1). The latter methodology does not, however,
preserve the original symmetry of the parent Platonic solid.

In a similar way, (SiO2)n nanospheres can be derived from
Archimedean polyhedra. In the case of polyhedra in which

three faces meet at each vertex, nanostructures with alter-
nating single and double oxygen bridges are formed, where-
as the polyhedra with four faces meeting at each vertex pro-
duce structures with single oxygen bridges. It is worth noting
that, unlike for Platonic solids, the original symmetry is
always preserved. The methodology for deriving silica nano-
spheres from Archimedean polyhedra is illustrated in
Figure 2. In addition to the aforementioned alumina,[18] we
have recently applied a similar approach to magnesium di-
chloride[19] and aluminoxane[20] cages.

Relative stabilities of (SiO2)n nanospheres : The relevance of
the derived silica nanospheres was first examined by using
the HF/3-21G* theory. Frequency calculations indicated that
the tetrahedron, cube, cuboctahedron, rhombicuboctahe-Figure 1. From Platonic solids to silica nanostructures.

Figure 2. From Archimedean polyhedra to silica nanostructures.
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dron, icosidodecahedron, and rhombicosidodecahedron
counterparts of silica, each possessing one or more imagina-
ry frequencies, are not true minima. The remaining nine
clusters, with no imaginary frequencies, were optimized fur-
ther by both the HF and B3LYP methods, in combination
with the basis set developed by Civalleri et al.[16] Table 1

summarizes the structures, and relative stabilities of relevant
silica nanospheres derived from regular polyhedra. The en-
ergies per SiO2 unit are given relative to a-quartz, which is
the lowest energy polymorph of silica, as demonstrated by
periodic calculations of Catti and co-workers.[21] Several
other theoretical studies are available for the silica poly-
morphs as well.[22]

From the polyhedra, in which four faces meet at each
vertex, the Oh-symmetric analogue of octahedron (SiO2)6 is
the only true minimum. The structure consists of eight Si3O3

rings, and has a diameter of 0.47 L. All other structures
belong to the family of polyhedra with three faces meeting
at each vertex, for which the required stoichiometry of Si/
O=1:2 is satisfied by alternating single and double oxygen
bridges, therefore producing n/2 Si2O2 rings. The latter struc-
tural family is clearly favored over the octahedron, which is
strongly destabilized by the unavoidable square-planar ori-
entation of the four-coordinated Si atoms. However, nano-
structures with alternating single and double oxygen bridges
do accommodate the preferable tetrahedral orientation, thus

lowering their stability to below 100 kJmol�1 per SiO2 unit
from that of a-quartz, independent of the method applied.
Compared to the B3LYP method, the HF method yields
lower stability for the clusters, while maintaining exactly the
same order of stability.

Followed by the unstable octahedron, the analogue of the
truncated tetrahedron possesses
the next highest relative energy.
The structure is destabilized be-
cause of the repulsion of the
double oxygen bridges pointing
inwards in the small cage. The
stability generally improves as a
function of the cluster size, the
Ih-symmetric Si120O240 analogue
of a truncated icosidodecahe-
dron being favored, closely fol-
lowed by the Ih-symmetric
Si60O120 counterpart of a trun-
cated icosahedron. Both clus-
ters are nanoscale with diame-
ters of 2.34 and 1.62 nm, respec-
tively, and have approximately
80 kJmol�1 more energy per
SiO2 unit than a-quartz. The
Si�O bond lengths in the
Si120O240 truncated icosidodeca-
hedron range from 1.63 L in
single oxygen bridges, to 1.67 L
in double oxygen bridges, which
are close to the bond lengths of
1.61 L in a-quartz.[23] Excluding
the Si2O2 rings, the O-Si-O
angles can accommodate opti-
mal tetrahedral orientation, the
values range from 108.7 to
114.7 8. The Si-O-Si angles,

again with the exception of Si2O2 rings, adopt values of
139.0 or 147.6 8, similar to the angle of 143.7 8 for a-quartz.
Apparently, the major source of destabilization, compared
to the crystalline form, is due to n/2 Si2O2 rings, that is, the
double oxygen bridges, found at the silica surfaces under
severe conditions.[24] Theoretical studies on the silica coun-
terparts of the Si12O24-truncated tetrahedron, Si24O48-truncat-
ed octahedron, and Si24O48-truncated cube have been report-
ed previously by Bromley,[14] who concluded that coordina-
tively saturated cages become favored over the Si=O termi-
nated clusters when n=24.

From (SiO2)n nanospheres to nanotubes : Single-walled silica
nanotubes were first derived by elongation of the parent
Platonic solids to obtain a molecular formula of Si70O140,
thus producing two distinct families of nanotubes (Figure 3).
The D4h-symmetric tube formed from the octahedron con-
tains only single oxygen bridges, and is closed with a nearly
square-planar SiO4 unit, the tubular section consisting of
Si4O8 repetitive units in the form of Si4O4 rings. Similar to

Table 1. Structures, diameters, and stabilities relative to a-quartz for optimized silica nanostructures derived
from regular polyhedra.

Parent
polyhedra

Symmetry Formula n Rings Diameter
[nm][a]

DEHF/n
[b]

[kJmol�1]
DEB3LYP/n

[b]

[kJmol�1]

octahedron Oh Si6O12 6 8NSi3O3 0.47 568.3 483.9
truncated
tetrahedron

Td Si12O24 12 6NSi2O2,
4NSi3O3,
4NSi6O6

0.81 202.3 177.7

dodecahedron D5d Si20O30 20 10NSi2O2,
12NSi5O5

0.97 126.9 109.9

truncated
octahedron

Oh Si24O48 24 12NSi2O2,
6NSi4O4,
8NSi6O6

1.07 112.5 97.1

truncated
cube

Oh Si24O48 24 12NSi2O2,
8NSi3O3,
6NSi8O8

1.14 120.5 105.0

truncated
cuboctahedron

Oh Si48O96 48 24NSi2O2,
12NSi4O4,
8NSi6O6,
6NSi8O8

1.50 103.7 90.8

truncated
icosahedron

Ih Si60O120 60 30NSi2O2,
12NSi5O5,
20NSi6O6

1.62 89.5 78.9

truncated
dodecahedron

Ih Si60O120 60 30NSi2O2,
20NSi3O3,
12NSi10O10

1.80 101.0 88.6

truncated
icosidodecahedron

Ih Si120O240 120 60NSi2O2,
30NSi4O4,
20NSi6O6,
12NSi10O10

2.34 89.0 78.7

[a] Measured from B3LYP optimized structures. [b] Modified 6–21G* (Si) and 6–31G* (O) basis sets, opti-
mized by Civalleri et al. (Ref [16]).
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its dodecahedral counterpart, the D5h-symmetric tube con-
tains n/2 Si2O2 rings. The tube is closed with halves of the
dodecahedron. The tubular section, with a repetitive unit of
Si10O20, is formed from rings of six Si atoms.

Relative stabilities at the HF level, with respect to a-
quartz, are given in Figure 4, for the two families of silica
nanotubes as a function of the number of SiO2 units up to

n=70. As far as the polyhedral silica clusters are concerned,
the dodecahedron is clearly favored over the octahedron.
This order is reversed for silica nanotubes with approxi-
mately 60 SiO2 units or more. Faster stabilization of octahe-
dra suggests that single oxygen bridges are preferred over
doubly bridging ones. Apparently, the silica counterpart of
the octahedron suffers from square-planar SiO4 capping,
and the faster gain in stability, as a function of tube length,
is due to the increased relative proportion of the preferable
tubular section. The effect of capping can be removed by ex-
trapolation of the tube to an infinite length. In the case of
the octahedron, the infinitely long tube lies
39.9 kJmol�1n�1[25] above a-quartz, whereas the infinitely
long tube derived from dodecahedron is much less stable,
lying 86.6 kJmol�1n�1 above the crystalline form.

Since both families of tubes presented have their pros and
cons, it is convenient to combine their favorable structural
components, that is, the tubular section of single oxygen
bridges with the doubly bridging cap. Four such tubes were

considered in this study, and the upper limit was set to
70 SiO2 units (Figure 5). The relative stabilities of capped
silica nanotubes are summarized in Table 2. The doubly

oxygen-bridging caps halve the axis of rotation. The oppos-
ing oxygen double bridges can be aligned or antialigned, re-
sulting in D3h or D3d symmetry, respectively, for tubes con-
taining Si6O6 rings in the tubular section. These tubes are
similar to the elongated Si12O24, Si18O36, and Si24O48 cages re-
ported by Bromley,[14] who found the lowest energy isomers
to have their bridges antialigned (D3d). While this is true for
very short tubes, which originate due to repulsions between
opposite bridges, it becomes negligible at longer separation.
In the case of the Si66O132 tube, the isomers are separated by
an energy difference of only 0.003 kJmol�1 in favor of D3h.

Figure 3. Derivation of two families of closed silica nanotubes by elonga-
tion of polyhedral clusters.

Figure 4. Stabilities relative to a-quartz as a function of tube length for
closed (SiO2)n nanotubes, derived from an octahedron and a dodecahe-
dron.

Figure 5. Closed silica nanotubes derived by combining the singly
oxygen-bridged tubular section with doubly bridging caps.

Table 2. Stabilities relative to a-quartz for the longest capped silica nano-
tubes studied.

Type Symmetry Formula n DEHF/n
[kJmol�1]

elongated octahedron D4h Si70O140 70 85.4
elongated dodecahedron D5h Si70O140 70 95.1
combined single/double-bridging D2h Si68O136 68 76.7
combined single/double-bridging D3h Si66O132 66 69.4
combined single/double-bridging D3d Si66O132 66 69.4
combined single/double-bridging D4h Si64O128 64 76.0
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De Leeuw et al. have employed the D3h-type Si36O72 tube to
study the effect of hydration on the stability of the tube.[26]

The authors justified their model selection on the basis of
similarities with a-quartz and microporous silicate materials.
Their conclusion, that the side of the tube is resistant to
attack by water while the ends are not, is clearly supported
by our calculations. Furthermore, this indicates that the
silica nanospheres presented above, with alternating single
and double oxygen bridges, might be kinetically unstable.
Tubes containing Si4O4 or Si8O8 rings in the tubular section
were studied only in D2h and D4h symmetry, respectively, be-
cause of the marginal influence of bridge orientations on the
relative stability (Figure 6). The relative stabilities improve
in the order D2h<D4h<D3h=D3d, suggesting the preference
of tubes with a diameter of approximately 0.8 nm.

To verify the preferable stability of thin tubes, we per-
formed periodic calculations at both HF and B3LYP levels,
optimizing the corresponding open-ended tubes. The rela-
tive stability of the tubes was studied as a function of the
tube diameter, that is, the repetitive (SiO2)n ring, in which
n=3–24 (Table 3 and Figure 7). The sharp decrease in rela-
tive energy, when moving from n=3 to n=4, is followed by
small improvements in the stability; this trend continues up

to n=7, after which the energy steadily begins to rise. Silica
nonotubes, in which n=3, 7, and 24, are illustrated in
Figure 8. According to B3LYP calculations, the preferred
tubes have diameters of around 1 nm, and have energies <

40 kJmol�1n�1 above that of a-quartz. The HF method pro-
duces practically the same trends, while somewhat lower sta-
bilities are observed, compared to the B3LYP method.

The practical outcome of a calculated energy difference
of <40 kJmol�1n�1 is not easy to estimate, since either ther-
modynamic or kinetic stability is required for chemical sta-
bility. It is apparent that the energies of the tubes are above
that of a-quartz, as are the other known polymorphs of
silica. From an energetic point of view, how much above is
acceptable for the tubes to be within the reach of synthesis
is another issue. As a reference, we selected carbon fuller-
enes and nanotubes, and considered the energy required to

Figure 6. Stabilities relative to a-quartz as a function of tube length for
closed (SiO2)n nanotubes derived by combining the singly oxygen-bridged
tubular section with doubly bridged caps.

Table 3. Diameters and stabilities relative to a-quartz for infinitely long
open-ended silica nanotubes.

Repetitive ring Symmetry Diameter[a]

[nm]
DEHF/n
[kJmol�1]

DEB3LYP/n
[kJmol�1]

(SiO2)3 C3v 0.45 54.8 46.6
(SiO2)4 C4v 0.63 45.1 38.7
(SiO2)5 C5v 0.69 44.0 38.2
(SiO2)6 C6v 0.82 43.8 37.7
(SiO2)7 C7v 0.87 43.9 37.6
(SiO2)8 C8v 1.00 44.4 37.7
(SiO2)9 C9v 1.07 45.3 38.2
(SiO2)10 C10v 1.18 46.3 38.9
(SiO2)12 C12v 1.35 48.8 40.8
(SiO2)18 C18v 1.87 56.0 46.7
(SiO2)24 C24v 2.43 61.6 51.5

[a] Measured from B3LYP optimized structures.

Figure 7. Stabilities relative to a-quartz as a function of the repetitive
(SiO2)n ring for open-ended silica nanotubes.

Figure 8. The repetitive (SiO2)n rings and space-filling models of open-
ended silica nanotubes, in which n=3, 7, and 24.
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fold a graphene sheet into C32 and C60 fullerenes, and into
an open-ended (5,5) carbon nanotube of infinite length. Full
optimizations were performed for each species by using the
HF and B3LYP theories.[27] The C32 fullerene, for which ex-
perimental evidence is available from anion photoelectron
spectroscopy,[28] has several isomers, the D3-symmetric
isomer being favored in energy.[29] The strain energy for the
D3-symmetric C32 is 96.4 kJmol�1 per C atom at the HF
level, and 84.4 kJmol�1 per C atom at the B3LYP level. The
highly abundant C60 fullerene is much more stable,
47.2 kJmol�1 per C atom (HF) and 43.0 kJmol�1 per C atom
(B3LYP) above the value of graphene. A significant contrib-
utor to the difference between C60 and C32 is caused by the
presence of isolated pentagons in C60. The (5,5) carbon
nanotube has a diameter of C60, and so halves of C60 are
suitable for capping these tubes. In the absence of caps, that
is, when an infinitely long open-ended tube is considered,
the tube energy lies 22.9 kJmol�1 per C atom and
19.3 kJmol�1 per C atom above the graphene sheet using
the HF and B3LYP methods, respectively, to calculate these
values. On the basis of this comparison, single-walled silica
nanotubes are seen to show high stability.

In the case of fullerenes, kinetic stability plays an impor-
tant role, as is seen by the high abundance of C60 instead of
giant fullerenes.[30] The evaluation of kinetic stability is by
no means straightforward, when one considers the numerous
reactions the molecules may undergo. The stability of fuller-
enes has been inspected in terms of HOMO–LUMO energy
gaps,[31] which serve as an indication of the kinetic stabili-
ty.[32] Considering the nanostructures of silica, the energy
gaps of open-ended silica nanotubes are similar, 8.2–8.5 eV
at the B3LYP level, being very close to the calculated gap
energy of a-quartz, which is 8.6 eV. Agreement with the ex-
perimental band gap of approximately 9 eV[33] is excellent.
Taking this into consideration, the open-ended tubes could
be kinetically stable also.

Conclusion

Molecular structures of single-walled silica nanospheres and
nanotubes were studied by ab initio HF and hybrid density
functional B3LYP methods. Nanospheres were derived from
Platonic solids and Archimedean polyhedra, which were
elongated to form both capped and open-ended nanotubes.
The relative stability of the nanostructures was estimated on
the basis of a periodic study on a-quartz, which is the lowest
energy polymorph of silica.

Two families of silica nanospheres can be derived: 1) clus-
ters with single bridging and 2) clusters with alternating
single and double oxygen bridges. The latter family is clearly
favored in energy, due to its ability to adapt SiO4 fragments
with tetrahedral orientation. The lowest relative energy is
obtained for the Si120O240 counterpart of a truncated icosido-
decahedron, with an energy of 78.7 kJmol�1 per SiO2 unit
higher than that of a-quartz at the B3LYP level. A major
source of destabilization may come from reactive Si2O2

rings, which might complicate the synthesis of silica nano-
spheres.

In contrast to nanospheres, silica nanotubes prefer single
oxygen bridges in the tubular section, so the SiO4 fragments
can accommodate a tetrahedral orientation. The tubes are
capped by Si2O2 rings, considerably decreasing the propor-
tion of reactive sites, especially in the case of long tubes.
The effect of the tube caps was removed by periodic calcula-
tions on open-ended silica nanotubes, for which the stability
was studied as a function of the tube diameter. The highest
stability, <40 kJmol�1 per SiO2 unit above a-quartz at the
B3LYP level, was observed for thin tubes with diameters of
approximately 1 nm. Comparison to fullerenes and to a (5,5)
carbon nanotube suggest that silica nanotubes could be
chemically stable.
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